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Abstract. Measurements of seismic velocity as a function of depth are generally restricted to borehole locations and are 5 

therefore sparse in the world’s oceans. Consequently, in the absence of measurements or suitable seismic data, studies requiring 

knowledge of seismic velocities often obtain these from simple empirical relationships. However, empirically derived 

velocities may be inaccurate, as they are typically limited to certain geological settings, and other parameters potentially 

influencing seismic velocities, such as depth to basement, crustal age, or heatflow, are not taken into account. Here, we present 

a machine learning approach to predict seismic p-wave velocity (vp) as a function of depth (z) for any marine location. Based 10 

on a training dataset consisting of vp(z) data from 333 boreholes and 38 geological and spatial predictors obtained from 

publically available global datasets, a prediction model was created using the Random Forests method. In 60 % of the tested 

locations, the predicted seismic velocities were superior to those calculated empirically. The results indicate a promising 

potential for global prediction of vp(z) data, which will allow improving geophysical models in areas lacking first-hand velocity 

data. 15 

1 Introduction 

Seismic p-wave velocities (vp) and velocity-depth profiles are needed in many marine-geophysical applications, e.g. for seismic 

data processing, for time-depth conversions, or to estimate hydrate concentrations in gas hydrate modelling. Direct 

measurements of seismic velocities, however, are sparse and limited to borehole locations such as those drilled by the Deep 

Sea Drilling Project (DSDP), the Ocean Drilling Program (ODP), and the International Ocean Discovery Program (IODP).  20 

Seismic velocities can also be obtained indirectly from seismic data. Approaches include derivation of 1D velocity profiles via 

refraction seismology using ocean bottom seismometers (OBS) (Bünz et al., 2005; Mienert et al., 2005; Westbrook et al., 2008; 

Plaza-Faverola et al. 2010a, 2010b, 2014), and velocity analysis of large-offset reflection seismic data (Crutchley et al., 2010, 

2014; Plaza-Faverola et al., 2012). However, suitable seismic datasets are only available in certain areas, and OBS-derived 

velocity profiles are of relatively low spatial and vertical resolution. 25 

In the absence of measurements and refraction seismic data, constant velocities are often used for time-depth conversions (e.g. 

Brune et al., 2010) or processing of reflection seismic data (Crutchley et al., 2010, 2011, 2013; Netzeband et al., 2010; 

Krabbenhoeft et al., 2013; Dumke et al., 2014), even though a constant velocity-depth profile is generally unrealistic and will 

thus lead to inaccurate results. 
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As an alternative, empirical velocity functions have been derived, which are based on averaged measurements and provide 

seismic velocity-depth relationships for different geological and geographical settings. For example, Hamilton (1979, 1980, 

1985) used averaged vp measurements from boreholes and sonobuoys to derive velocity-depth functions for different marine 

settings and sediment types. Velocities calculated from these empirical functions have been used e.g. for time-depth 

conversions (Lilly et al., 1993; Brune et al., 2010), brute stack processing of reflection seismic data, as well as local (Bünz et 5 

al., 2005) and regional (Scanlon et al., 1996; Wang et al., 2014) velocity models.    

Although velocity profiles calculated from empirical functions may work well in some cases, empirical functions do not always 

produce accurate vp(z) profiles, due to their use of depth as the only input parameter and their limitation to certain regions or 

geological settings. Mienert et al. (2005) observed both agreements and disagreements between velocity profiles derived from 

OBS data and calculated from Hamilton functions, whereas Westbrook et al. (2008) argue that empirical functions are in 10 

general not representative for other areas due to variations in lithology and compaction history. Moreover, the Hamilton 

functions fail to provide correct velocities in areas containing gas hydrates or gas-saturated sediments (Bünz et al., 2005; 

Westbrook et al., 2008). Consequently, an alternative method is required to estimate vp(z) profiles for a larger variety of 

geological settings. 

Over the last years, parameters in many different applications have been successfully predicted using machine learning 15 

techniques (e.g. Lary et al., 2016). In geosciences and remote sensing, machine learning methods have been used to predict 

soil properties (Gasch et al., 2015; Ließ et al., 2016; Meyer et al., 2018), air temperatures (Meyer et al., 2016a, 2018), biomass 

(Meyer et al., 2017), and the elasticity modulus of granitic rocks (Karakus, 2011). Applications also extended into marine 

settings, involving the prediction of sediment mud content off southwest Australia (Li et al., 2011), as well as parameters such 

as seafloor porosity (Martin et al., 2015; Wood et al., 2018), seafloor biomass (Wei et al., 2010), and seafloor total organic 20 

carbon (Wood et al., 2018; Lee et al., 2019) on a global scale. 

In machine learning, a prediction model is constructed from a training dataset consisting of the target variable to be predicted, 

and a set of predictor variables. A random subset of the data, the test set, is typically held back for testing and validation of the 

prediction model. The most widely used machine learning methods are Artificial Neural Networks (e.g. Priddy and Keller, 

2005), Support Vector Machines (Vapnik, 2000), and Random Forests (RF; Breiman, 2001).  25 

RF is an ensemble classifier based on the concept of decision trees, which are grown from the training set by randomly drawing 

a subset of samples with replacement (bagging or bootstrap approach) (Breiman, 2001). At each tree node, the data are split 

based on a random subset of predictor variables to partition the data into relatively homogenous subsets and maximize the 

differences between the offspring branches. Each tree predicts on all samples in the test set and the final prediction is obtained 

by averaging the predictions from all trees. 30 

RF has been repeatedly found superior to other machine learning methods (e.g. Li et al., 2011; Cracknell and Reading, 2014). 

It is robust to noise and outliers (Breiman, 2001), and it is also able to handle high-dimensional and complex data. Moreover, 

RF does not require any preprocessing of the input variables and provides variable importance measurements, making it the 

first choice method in many applications. 
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Here, we apply RF to predict seismic p-wave velocity-depth profiles on a global scale, based on a set of 38 geological and 

spatial predictors that are freely available from global datasets. Prediction performance is evaluated and compared to velocity-

depth profiles calculated from empirical vp functions. We also test additional methods for improvement of model performance 

and determine which predictors are most important for the prediction of vp. 

2 Methods  5 

2.1 Dataset 

2.1.1 vp(z) data 

vp(z) profiles for training of the RF model were obtained from boreholes drilled by the DSDP, ODP and IODP campaigns 

between 1975 and 2016. All boreholes containing vp measurements were used, excluding those with bad-quality logs according 

to the logging description notes. In total, 333 boreholes were included in the dataset, the distribution of which is shown in Fig. 10 

1. All vp(z) data from these boreholes are available through http://www.iodp.org and were downloaded from the archive at 

http://mlp.ldeo.columbia.edu/logdb/scientific_ocean_drilling/. 

A multitude of measuring methods and tools had been employed by the different drilling campaigns to obtain vp measurements, 

including wireline logging tools (e.g. sonic digital tool, long-spacing sonic tool, dipole sonic imager, borehole compensated 

sonic tool) and logging-while-drilling tools (sonicVISION tool, ideal sonic-while-drilling tool). The majority of these methods 15 

provided vp measurements at 0.15 m depth intervals. Lengths of the vp logs varied greatly, ranging between 10 m and 1800 m 

(average: 370 m), with top depths of 0-1270 m (average: 138 m) and bottom depths of 16-2460 m (average: 508 m). 

After exporting the vp(z) profiles for each borehole, the data were smoothed using a moving average filter with a window of 

181 data points (corresponding to ca. 27 m for a 0.15 m depth interval). Smoothing was applied to remove outliers and to 

account for unknown and varying degrees of uncertainty associated with the different measurement tools. In addition, 20 

smoothing was expected to facilitate prediction, as the aim was to predict the general vp(z) trend at a given location, rather 

than predicting exact vp values at a certain depth. Following smoothing, the profiles were sampled to 5 m depth intervals, using 

the same depth steps in all boreholes. 

2.1.2 Predictors 

A total of 38 geological and spatial variables obtained from the borehole metadata and freely available global datasets were 25 

included as predictors (Table 1). For predictor variables based on global grids, such as age of crust (crustage), sediment 

thickness (sedthick), and surface heatflow (heatflow), values were extracted for each borehole location in GMT (Wessel et al., 

2013), using the command grdtrack. As the crustal age grid (Müller et al., 2008) contained only ages for oceanic crust, the age 

for locations above continental crust was set to 1 billion years to represent a significantly older age than that of oceanic crust. 
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Depth to basement (depth2base) was calculated by subtracting the depth values from the (constant) sedthick value at each 

borehole location, so that depths below the basement were indicated by a negative depth2base value. The distance predictor 

variables, e.g. distance to the nearest seamount (dist2smt), were calculated based on the borehole location and the respective 

datasets (Table 1) via the GMT command mapproject.  

Of the 38 predictors, 15 were of the type continuous, whereas 23 were categorical variables describing the type of crust and 5 

the geological setting at each borehole location (Table 1). The categorical predictors were encoded as either 0 or 1, depending 

on whether the predictor corresponded to the geological setting at a given borehole. Multiple categories were possible; for 

example, a borehole located in a fore-arc basin above continental crust would be described by 1 for the predictors “contcrust”, 

“active_margin”, “subduction” and “fore-arc”, and 0 for all other categorical predictors. 

2.2 Random Forest implementation 10 

RF was implemented using the RandomForestRegressor in Python’s machine learning library scikit-learn (Pedregosa et al., 

2011). Two parameters needed to be set: the number of trees (n_estimators) and the number of randomly selected predictors 

to consider for splitting the data at each node (max_features). Many studies used 500 trees (e.g. Micheletti et al., 2014; Belgiu 

and Drăguţ , 2016; Meyer et al., 2017, 2018), but as performance still increased after 500 trees, we chose 1000 trees instead. 

The max_features parameter was initially set to all predictors (38), as recommended for regression cases (Pedregosa et al., 15 

2011; Müller and Guido, 2017), although some studies suggest tuning this parameter to optimize model results (Micheletti et 

al., 2014; Ließ et al., 2016; Meyer et al., 2016b).  

2.3 Model validation 

A 10-fold cross-validation (CV), an approach frequently used in model validation (e.g. Li et al., 2011; Gasch et al., 2015; Ließ 

et al., 2016; Meyer et al., 2016b, 2018), was applied to validate the RF model. CV involved partitioning the dataset into ten 20 

equally sized folds. Nine of these folds acted as the training set used for model building, whereas the remaining fold was used 

for testing the model and evaluating the performance. This procedure was repeated so that each fold acted once as the test fold, 

and hence each borehole was once part of the test set. Performances of all test folds were averaged to give a final model 

performance.  

Partitioning into folds was not done randomly from all available data points but by applying a leave-location-out (LLO) 25 

approach (Gasch et al., 2015; Meyer et al., 2016a, 2018) in which the data remained separated into boreholes, i.e., locations, 

so that each fold contained 1/10 of the boreholes. With 33-34 boreholes per fold, the size of the training dataset thus varied 

between 20166 and 20784 data points. By using the LLO approach, whole locations were left out of the training set, thereby 

allowing the RF model to be tested on unknown locations through prediction of vp for each borehole in the test fold. If the 

folds were chosen randomly from all data points, each borehole location would be represented in the training set by at least 30 

some data points, resulting in overoptimistic model performance due to spatial overfitting (Gasch et al., 2015; Meyer et al., 

2016a, 2018).  
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Performance of the RF model was evaluated by comparing the predicted and true vp(z) curves for each borehole in the test fold 

and calculating the standard error metrics root mean square error (RMSE), mean absolute error (MAE), and the coefficient of 

determination (R2). RMSE, MAE and R2 were then averaged over the ten folds. 

In addition, we also tested how well the predicted vp(z) curves performed compared to vp(z) curves calculated from empirical 

functions. Using the depth values of the respective test borehole, vp(z) profiles were therefore calculated from the five empirical 5 

functions presented by Hamilton (1985) for deep-sea sediments, i.e., for terrigenous silt and clays (termed H1 in the following), 

terrigenous sediments (H2), siliceous sediments (H3), calcareous sediments (H4), and pelagic clay (H5). These vp functions 

were chosen because the deep-sea setting applied to the majority of the boreholes, or was the best choice in absence of empirical 

functions for other geological settings such as mid-ocean ridges. The resulting Hamilton curves were evaluated against the 

true vp(z) profile, and RMSE, MAE and R2 were averaged over the five curves. The averaged error metrics were then compared 10 

to the error metrics of the prediction, and each borehole was assigned a score between 0 and 3 as shown in Table 2. Scores 2 

and 3 were interpreted as a good prediction, i.e., better than the Hamilton curves, whereas scores 0 and 1 represented generally 

bad predictions. The proportion of boreholes with good predictions, averaged over the ten folds, served as another performance 

evaluation measure. 

2.4 Predictor selection 15 

To determine the most important predictors for vp prediction, a predictor selection approach was performed. Although RF can 

deal with high data dimensionality, predictor selection is still recommended, not only to remove predictors that could cause 

overfitting but also to increase model performance (e.g. Belgiu and Drăguţ, 2016, and references therein). We applied 

Recursive Feature Elimination (RFE), which is based on the variable importance scores provided by the RF algorithm. After 

calculating and evaluating a model with all 38 predictors, the least important predictor according to the variable importance 20 

scores was removed and the model was calculated again. This procedure was repeated until only one predictor was left. By 

evaluating model performance for each run via CV, using the same ten folds as before, the optimum number of predictors was 

determined.    

2.5 Tests to improve prediction performance 

Additional tests to improve prediction performance included predictor scaling, variation of the max_features parameter, and 25 

stronger smoothing of the vp(z) curves. All models were evaluated via a 10-fold CV, using the same folds as in the previous 

model runs. 

Predictor scaling was applied to account for the different data ranges of continuous and categorical features. Model 

performance may be negatively affected if different types of variables or data ranges are used (Otey et al., 2006; Strobl et al., 

2007), even though RF does not normally require scaled input data. All continuous predictors were scaled to between 0 and 1 30 

to match the range of the categorical predictors, and RFE was repeated. 
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As tuning of the max_features parameter, i.e., the number of predictors to consider at each split, is recommended by some 

studies (Ließ et al., 2016; Meyer et al., 2018), an additional model was run in which max_features was varied between 2 and 

38 (all features) with an interval of 2. Performance was evaluated for each case to find the optimum number of predictors to 

choose from at each split.  

A third attempt to improve model performance involved enhanced filtering of the vp(z) curves so that larger vp variations were 5 

smoothed out and the curves indicated only a general trend, which would likely be sufficient for many applications requiring 

knowledge of vp with depth. The vp curves therefore underwent spline smoothing using Python’s scipy function 

UnivariateSpline. Three separate RF models were calculated: (i) spline1, which involved spline smoothing of the predicted 

curve of each test borehole; (ii) spline2, in which the input vp(z) data were smoothed; and (iii) spline3, where both the input 

vp(z) curves and the predictions were smoothed. All three cases were run with the 16 most important predictors as determined 10 

from the RFE results, and compared to the previous models.  

3 Results  

3.1 Prediction performance 

Overall, many vp(z) profiles were predicted well by the RF models. For the 38-predictor CV, about 59.5 % of the boreholes 

had prediction scores of 2 or 3, representing a prediction performance superior to that of the Hamilton functions. 15 

Predictions of prediction score 3, which were characterised by lower RMSE and MAE values and a higher R2 than the five 

empirical functions, often exhibited a good fit to the true vp(z) curve (Fig. 2a-d). Even for more complex velocity profiles, e.g. 

involving a velocity reduction at depth (Fig. 2d), or a strong increase such as that from 2.2 km s-1 to >4 km s-1 at the basement 

contact in Fig. 2b, the predicted vp(z) curves generally matched the true curves well. In some cases, score 3 predictions did not 

provide a good fit but still performed better than the empirical functions (Fig. 2e). Score 2 predictions generally indicated the 20 

correct trend of the true vp(z) profile (Fig. 2f), whereas score 1 and score 0 predictions failed to do so, with velocities often 

considerably higher or lower than the true velocities (Fig. 2g, h). 

The RFE CV revealed best performance for 33 predictors, as indicated by the lowest RMSE and MAE values (Fig. 3a). The 

proportion of boreholes with prediction scores of 2 or 3 was 59.2 % and thus slightly lower than for the 38-predictor CV (59.5 

%; Fig. 3b). The highest proportion of 61.9 % was achieved by the 16-predictor model (Fig. 3b), but this also led to the highest 25 

errors (Fig. 3a). 

By scaling all predictors to between 0 and 1 and repeating RFE, RMSE and MAE were reduced further, with the best errors 

obtained for 35 predictors (Fig. 3a). These errors were only slightly lower than those of the 30-predictor case, which achieved 

a higher percentage of boreholes with good prediction (60.4 %; Fig. 3b). 

Varying the number of predictors to consider for splitting the data at each tree node also improved the performance. For 30 

max_features = 22, RMSE and MAE were lower than in all previous RF cases (Fig. 3a), while the proportion of boreholes 
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with good performance was 61.3 % and thus only slightly lower than for the 16-predictor case in which all 38 predictors were 

considered (Fig. 3b). 

The three attempts of stronger smoothing of the vp(z) profiles via splines resulted in overall worse performance than the 16-

predictor case, both in terms of errors and proportion of well-predicted boreholes (Fig. 4a). An exception is the spline1 case 

(spline smoothing of the predicted vp(z) profile), for which 62.4 % of the boreholes had scores of 2 or 3 (Fig. 4b), although 5 

RMSE and MAE were slightly worse than for the other RF cases. 

3.2 Score distribution 

The global distribution of boreholes with different prediction scores, shown in Fig. 5 for the 16-predictor case without spline 

smoothing, did not indicate a clear separation into areas with relatively good (scores 2 and 3) or bad (scores 0 and 1) prediction 

performance. Some areas contain clusters of >10 boreholes, many of which had a prediction score of 3. Examples included the 10 

Sea of Japan (area A in Fig. 5a), the Nankai Trough (B), the Ontong-Java Plateau (C), the Queensland Plateau (D), and the 

Great Australian Bight (E). However, nearly all of these cluster areas also contained boreholes with bad prediction scores (Fig. 

5b). Similarly, single boreholes in remote locations were often characterised by a prediction score of 0 (Fig. 5b), but there were 

also several remote boreholes with scores of 3, e.g. on the Mid-Atlantic Ridge (area F in Fig. 5a).    

3.3 Predictor importance 15 

For the 38-predictor CV, the five most important predictors were “depth2base”, “crustage”, “depth”, “dist2smt”, and “wdepth” 

(Fig. 6). Continuous predictors and categorical predictors were clearly separated in the predictor importance plot (Fig. 6), with 

continuous predictors being of high importance in the RF model, whereas categorical predictors appeared less important. The 

only exception was the categorical predictor variable “spreading_ridge”, which had a slightly higher importance ranking than 

the continuous predictors “long” and “dist2transform”. Many of the categorical predictors were of negligible (almost 0) 20 

importance (Fig. 6). 

When the least important predictor was eliminated after each model run using RFE, the same trend was observed: in both the 

unscaled and scaled RFE cases, all categorical predictors were eliminated before the continuous predictors (Table 3). In the 

16-predictor case, which had the highest proportion of well-predicted boreholes (61.9 %), the only categorical predictor 

included was “spreading_ridge”. 25 

In the unscaled RFE case, the five most important predictors were the same as in the feature importance plot of the 38-predictor 

case (Fig. 6). However, the order differed slightly, with “depth” being eliminated before “dist2smt”, “wdepth”, “depth2base”, 

and “crustage” (Table 3). When using scaled predictors, the five top predictors included “heatflow” (ranked sixth in both the 

38-predictor CV and unscaled RFE cases) instead of “crustage”. “Crustage” dropped to position 15 and was thus the least 

important of the continuous predictors (Table 3). In general, however, the position ranking of most predictors varied only by 30 

up to five positions between the unscaled and the scaled RFE cases (Table 3).    
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4 Discussion 

4.1 Prediction performance in comparison with empirical functions 

Our results show that vp(z) profiles can be predicted successfully using machine learning. Overall, the applied RF approach is 

superior to the empirical vp functions of Hamilton (1985), as indicated by the 60 % of tested boreholes with prediction scores 

of 3 or 2. Although such a quantitatively better performance (i.e., lower RMSE and MAE, and higher R2 than the Hamilton 5 

vp(z) profiles) does not always mean a perfect fit to the true vp(z) curve of the tested borehole, the RF approach has a promising 

potential for the prediction of vp with depth. 

Slight improvements of the prediction performance were achieved by applying RFE, resulting in a proportion of well-predicted 

boreholes of 61.9 % for the 16-predictor model. Smoothing the predicted vp(z) profiles via spline smoothing (spline1 case) 

provided a further increase to 62.4 % of well-predicted boreholes. In addition, reducing the max_features parameter from 38 10 

(all predictors) to 22 also resulted in a slight improvement (61.3 %), thus supporting other studies that recommended tuning 

the max_features parameter to improve results (Ließ et al., 2016; Meyer et al., 2018). However, to increase model performance 

even further, to a proportion of well-predicted boreholes well exceeding 60 %, other changes are required. 

4.2 Most important predictors for the prediction of vp(z) 

Both the predictor importance ranking of RF and the RFE results revealed “depth” as one of the most important predictors. 15 

However, “depth” was not the most important predictor, which is surprising as empirical vp functions, including those of 

Hamilton (1985), all use depth as the only input parameter. Our results showed that “depth2base” was always ranked higher 

than “depth”, and often the predictors “wdepth”, “dist2smt” and “crustage” also had higher importance scores than “depth”. 

Although “depth” is obviously still an important parameter in the prediction of vp, these observations imply that empirical 

functions using only depth as input and neglecting all other influences may not produce realistic vp values, which is supported 20 

by the at least 60 % of test locations for which the RF approach produced better vp(z) profiles than the Hamilton functions. 

The high importance of the predictors “depth2base”, “wdepth”, “dist2smt”, “crustage”, as well as “heatflow”, seems 

reasonable. The depth to the basement, which is related to the sediment thickness, is relevant because of the rapid vp increase 

at the basement contact and the associated transition from relatively low (<2.5 km s-1) to higher (> 4 km s-1) vp values. Even 

though in the majority of boreholes, the basement was not reached, the depth to the basement strongly influences vp. The high 25 

ranking of the distance to the neareast seamount is likely attributed to the associated change in heatflow at seamount locations. 

Higher heatflow and hence higher temperatures affect density, which in turn affects vp. The predictor “crustage” indicates 

young oceanic crust, which is characterised by higher temperature and hence lower density, affecting vp. Moreover, “crustage” 

differentiates between oceanic (<200 Myr) and continental (here: 1 Byr) crust, and apparently more effectively than the 

categorical predictors “oceancrust” and “contcrust”, which are of considerably lower importance.   30 
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It has to be noted that the high-importance predictors discussed above only represent the most important of the 38 predictors 

used for prediction of vp; they are not necessarily the parameters that most strongly influence vp in general. If other parameters, 

such as porosity, density, pressure, or saturation, had been included as predictors, they would likely have resulted in a higher 

importance ranking than, e.g., “dist2smt” or “crustage”. However, these parameters were not included in the model as they 

were restricted to measurements at borehole locations – not necessarily those from which vp(z) data were obtained – and are 5 

therefore not available for every location in the oceans. For the same reason, other geophysical parameters, e.g. electrical 

resistivity and magnetic susceptibility, were also not included. 

A surprising finding in terms of predictor importance is the low importance of all categorical predictors. The clear separation 

between continuous and categorical predictors in the predictor importance plots may be due to biased predictor selection, as 

observed by Strobl et al. (2007) when different types of predictors were used. In such cases, categorical predictors may often 10 

be neglected and ignored by the machine learning algorithm (Otey et al., 2006). Scaling the continuous predictors to the same 

range as the categorical predictors did not help to change the importance ranking, but bias cannot be excluded. On the other 

hand, it is also possible that the geological setting described by the categorical predictors was simply not relevant to the 

prediction of vp. This possibility appears to be supported by the RFE results, which reveal the best performance (61.9 % of 

well-predicted boreholes) when all but one categorical predictors were excluded (16-predictor case).  15 

4.3 Suggestions for further improvement of performance 

The fact that prediction performance could not be much improved by predictor selection, tuning the max_features parameter, 

or additional smoothing suggests that other measures are needed to further improve the prediction performance. The 

comparatively high proportion of boreholes with badly predicted vp(z) profiles (about 40 %) is likely due to the limited number 

of boreholes that were available in this study, but may also have been influenced by the choice of machine learning algorithm. 20 

It is possible to add more predictors that potentially influence vp, for example, seafloor gradient, bottom water temperature, 

and distance to the shelf edge. In addition, some of the predictors could be improved. For example, the age of the continental 

crust, currently set to the constant value of 1 Byr, could be adapted based on the crustal age grid by Poupinet and Shapiro 

(2009). Other studies also suggest including the first and second derivatives of predictors or other mathematical combinations 

of predictors (Obelcz and Wood, 2018; Wood et al., 2018; Lee et al., 2019). 25 

Another way to extend the dataset is to include more vp(z) data. Given the relatively inhomogenous global distribution of 

borehole locations used in this study (Fig. 1), adding more vp(z) data is highly recommended. On a much smaller scale, Gasch 

et al. (2015) noted that high spatial heterogeneity of input locations limits the prediction performance and increases prediction 

errors. Adding more vp(z) data, especially from regions such as the southern Pacific and Atlantic oceans that are presently not 

covered, will likely help to increase the prediction performance. For example, the vp(z) records from recent IODP expeditions 30 

may be added to the dataset as they become available. Additional vp data could also be obtained from commercial boreholes 

and refraction seismic data from ocean bottom seismometers, although the latter would be of lower vertical resolution.   
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The choice of machine learning algorithm may also influence model performance. Studies comparing RF against other machine 

learning algorithms reported different trends: in some cases, RF was superior in terms of prediction performance (e.g. Li et al., 

2011; Cracknell and Reading, 2014), whereas in other cases, no strong differences were observed between the different 

methods (e.g. Goetz et al., 2015; Meyer et al., 2016b). Given the generally positive reputation of RF as a prediction method, 

we doubt that a different algorithm would lead to a significantly different prediction performance for vp. 5 

5 Conclusions 

In this study, we presented an RF model for the prediction of vp(z) anywhere in the oceans. In about 60 % of the tested locations, 

the RF approach produced better vp(z) profiles than empirical vp functions. This indicates a promising potential for the 

prediction of vp(z) using machine learning, although some improvement is still required. In particular, the model input data 

should be extended to increase spatial coverage, which is expected to significantly improve prediction performance. Our results 10 

showed that depth, which is the only input in empirical vp functions, is not the most important parameter for the prediction of 

vp. Distance to the basement, water depth, age of crust, and distance to the nearest seamount are, in general, equally or even 

more important than depth. By including these parameters in the determination of vp, the RF model is able to produce more 

accurate vp(z) profiles and can therefore be used as an alternative to empirical vp functions. This is of particular interest for 

geophysical modelling applications, such as modelling gas hydrate concentrations, in areas lacking alternative vp(z) 15 

information from boreholes or seismic data.       
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Figure captions 

 
Figure 1. Distribution of the 333 boreholes from which vp(z) profiles were extracted. DSDP – Deep Sea Drilling Project, ODP – 

Ocean Drilling Program, IODP – International Ocean Discovery Program. Bathymetry (30 s resolution) is from the GEBCO_2014 10 
grid (http://www.gebco.net). 
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Figure 2. Examples for true vp(z) curves, predicted vp(z) curves, and vp(z) calculated from the five Hamilton functions (Hamilton, 

1985) used in model evaluation. (a)-(d) well predicted vp(z) curves of score 3, (e) less good prediction of score 3, (f) score 2, (g)-(h) 

bad predictions of scores 1 and 0. See 2.3 for a description of H1 to H5. 
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Figure 3. Comparison of (a) error metrics and (b) proportion of well predicted boreholes (scores 2 and 3) for different model runs. 

RMSE – root mean square error, MAE – mean absolute error, CV – cross-validation, RFE – Recursive Feature Elimination. 

 

 5 
 

Figure 4. Comparison of (a) error metrics and (b) proportion of well predicted boreholes (scores 2 and 3) for model runs with 

different degrees of data smoothing. RMSE – root mean square error, MAE – mean absolute error, CV – cross-validation. 
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Figure 5. Distribution of boreholes with (a) good (scores 2 and 3) and (b) bad (scores 0 and 1) vp predictions. Areas A-E mark clusters 

of boreholes in the Sea of Japan (A), the Nankai Trough (B), the Ontong-Java Plateau (C), the Queensland Plateau (D), and in the 

Great Australian Bight (E). Area F indicates an example for remote boreholes of score 3 on the Mid-Atlantic Ridge. Bathymetry (30 

s resolution) is from the GEBCO_2014 grid (http://www.gebco.net). 5 
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Figure 6. Predictor importance ranking for the 38-predictor model run. For each predictor, the importance was averaged over the 

ten runs of the 10-fold CV. Categorical predictors are marked with an asterisk. Predictor names are explained in Table 1. 
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Table 1.  Overview of the 38 predictors and their sources. 

predictor description type source description reference 
lat latitude continuous DSDP/ODP/IODP data processing notes  
long longitude continuous DSDP/ODP/IODP data processing notes  
wdepth water depth continuous DSDP/ODP/IODP data processing notes  

depth depth below seafloor continuous vp logs  
crustage age of crust continuous ocean crust: global crustal age grid (2 min 

res.) 
Müller et al. (2008) 
 

continental crust: 1 Byr (const.)  

sedthick sediment thickness continuous global sediment thickness grid (5 min 
res.) 

Whittaker et al. 
(2013) 

spreadrate spreading rate continuous global spreading rate grid (2 min res.) Müller et al. (2008) 

heatflow surface heatflow continuous global surface heatflow grid (2° res.) Davies (2013) 
 

depth2base depth to acoustic 
basement 

continuous derived from sediment thickness and 
depth 

 

dist2smt distance to nearest 
seamount 

continuous derived from global seamount dataset Kim and Wessel 
(2011) 

dist2hole distance to nearest 
borehole 

continuous derived from borehole locations   

dist2coast distance to nearest 
coast 

continuous derived from global shoreline dataset Wessel and Smith 
(1996) 

dist2trench distance to nearest 
trench 

continuous derived from global trench dataset Coffin et al. (1998) 

dist2ridge distance to nearest 
spreading ridge 

continuous derived from global spreading ridge 
dataset 

Coffin et al. (1998) 

dist2transform distance to nearest 
transform boundary 

continuous derived from global transform boundary 
dataset 

Coffin et al. (1998) 

oceancrust oceanic crust categorical derived from crustal age  
contcrust continental crust categorical derived from crustal age  

active_margin geological setting: 
active margin 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

passive_margin geological setting: 
passive margin 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

spreading_ridge geological setting: 
spreading ridge 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

subduction geological setting: 
subduction zone 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

volcanic_arc geological setting: 
volcanic arc 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

fore-arc geological setting: fore-
arc basin 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

accretion_wedge geological setting: 
accretionary wedge 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 
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trench geological setting: 
trench 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

cont_slope geological setting: 
continental slope 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

shelf geological setting: 
continental shelf 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

reef geological setting: 
(former) reef 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

basin geological setting: 
basin 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

struct_high geological setting: 
structural high 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

cont_plateau geological setting: 
continental plateau 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

aseismic_ridge geological setting: 
aseismic ridge 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

seamount geological setting: 
seamount 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

guyot geological setting: 
guyot 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

mud_volcano geological setting: mud 
volcano 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

ds_fan geological setting: 
deep-sea fan 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

hydroth_vent geological setting: 
hydrothermal vent 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 

 

cold_vent geological setting: cold 
vent 

categorical DSDP/ODP/IODP proceedings (site 
descriptions) 
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Table 2. Scores for performance comparison between RF prediction and vp calculated from the empirical functions of Hamilton 
(1985). 5 

Score Description Inferred 
prediction 
performance 

3 all 3 error metrics of RF prediction indicate better fit than 
empirical functions 

Good 

2 2 of 3 error metrics of RF prediction indicate better fit than 
empirical functions 

Good 

1 1 of 3 error metrics of RF prediction indicate better fit than 
empirical functions 

Bad 

0 all 3 error metrics of empirical functions indicate better fit than 
RF prediction 

Bad 
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Table 3. Predictor ranking based on the RFE results for unscaled and scaled predictors. Categorical predictors are marked with an 
asterisk. See Table 1 for an explanation of predictor names. 

Position Predictor 
RFE unscaled RFE scaled 

1 Crustage wdepth 
2 depth2base depth2base 
3 Wdepth dist2smt 
4 dist2smt depth 
5 Depth heatflow 
6 Heatflow sedthick 
7 dist2hole dist2trench 
8 dist2coast dist2hole 
9 dist2trench dist2coast 
10 Lat spreadrate 
11 Sedthick dist2ridge 
12 Spreadrate long 
13 dist2ridge lat 
14 Long dist2transform 
15 dist2transform crustage 
16 spreading_ridge* contcrust* 
17 cont_plateau* basin* 
18 reef* active_margin* 
19 aseismic_ridge* struct_high* 
20 basin* oceancrust* 
21 struct_high* passive_margin* 
22 oceancrust* subduction* 
23 volcanic_arc* reef* 
24 active_margin* accretion_wedge* 
25 contcrust* cont_plateau* 
26 guyot* cont_slope* 
27 passive_margin* spreading_ridge* 
28 trench* fore-arc* 
29 subduction* shelf* 
30 seamount* ds_fan* 
31 fore-arc* volcanic_arc* 
32 hydroth_vent* trench* 
33 cont_slope* seamount* 
34 shelf* aseismic_ridge* 
35 accretion_wedge* guyot* 
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36 ds_fan* cold_vent* 
37 mud_volcano* hydroth_vent* 
38 cold_vent* mud_volcano* 
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